Course Overview

Medical Instrumentation		
-		

Madiaal Instrum

- 1- Introduction
- 2- Principle of instrumentation
 - Properties of light
 - Dispersion of light
 - Measurement of light
- 3-Absorption methods in the visible and ultraviolet
 - ✤ The nature of radiant energy
 - The absorption process
 - ✤ Nomenclature
 - Fundamental laws of absorbance
 - The Bouguer or Lambert law
 - The beer law
 - The combined from beer's law
 - Deviation from beer's law
 - Photometric error
 - ✤ Visual colorimetric methods
 - The dilution method
 - The standard series method
 - Photometric instruments
 - Radiant energy sources
 - The optical system
 - The wavelength selectors
 - Filters
 - Monochromators
- ✤ Light sensitive devices
 - Vacum-tube photocells (photoemissive cells)
 - (photovoltaic cells) • Barrier –layer cells
 - Photomultiplier tubes
- Commercial instruments
 - Photometric methods
 - Absorption spectra

- Determination of concentration from absorbance by calculation Calibration curves
- Determination of concentration pH and pK
- Determination of the formula of a complex
 - The mole ratio method
 - The method of continuous variations
 - Multicomponent analysis
 - Photometric titration
- Turbidimetry and nephelometry
 - Principe
 - Detection of scattered light
 - Limitations
 - Referactivity
 - Applications
- 4- Infrared and raman spectrometry
 - ✤ Infrared spectrometry
 - Absorption of infrared radiation
 - Principle of infrared instrument design
 - Sources
 - Detectors
 - wavelength
 - sample handling
 - use in analysis
 - Raman spectrometry
 - Theory
 - Principle of raman instrument
 - Application and comparison
- 5- Analytical flame spectrometry
 - The production of an atomic vapor
 - The premix burner
 - The analytical flame
 - Atomization
 - Spectroscopic observation of the atomic vapor
 - Atomic emission spectrometry
 - Instrumental aspects of emission spectrometry
 - Atomic absorption
 - Instrument aspects of atomic absorption
 - Hallow cathode discharge lamp
 - \circ The role of the monochromator
 - Elimination of interfering flame emission

- Quantitative determination based on the spectroscopic observation of an atomic vapour
- Instrument calibration
- Interferences
- Comparison of atomic emission and atomic absorption
- 6- Chromatography
 - Theory of chromatography
 - Gas chromatography
 - Instrument in gas chromatography
 - Liquid chromatography
 - Instrumention inliquid chromatography
 - Thin-layer chromatography
- 7- Ion exchange
 - Synthetic ion exchange materials
 - Structure
 - Mechanism of exchange
 - Selectivity rules
 - Distribution coefficients
 - Applications
- 8- potentiometry
 - Electrodes
 - The basic principle
 - The reference electrodes
 - The ion selective electrodes
- 9-Radio isotope counters
 - Beta isotope (14 c) counter
 - Gamma isotope (125 c) counter
 - Principles and methods
- 10- Automation
 - The common denominatrors of automated chemical analyzers
 - A continuous flow analyzer
 - A discrete sample analyzer
 - A bath (centrifugal) analyzer

(PRACTICAL)

- 1. Estimation of KMnO₄ Spectrophotometrically
- 2. Determination of Cu++ ion in the given sample solution by aid of copper tetra amine complex ion spectrophotometrically
- 3. Determination of Iron as Iron thiocyanate specrophotonetrically
- 4. Determination OR Nitrate in the given sample solution spectrophotometrically pK_a
- 5. Determination of Pka value of phenolphathalin (spectrophotometrically)
- 6. Determination the dissociation constant of methyl orang
 - (spectrophotometrically) (λ Max=440 nm)
- Determination the ionization constant of bromothymol blue (spectrophotometrically)
- 8. Estimation of Ni++ ion as Nickel dimethylglyoxime
- 9. Determination of Ammonia using Nessler's reagent
- 10. Composition of complexes :
 - a. Moe ratio method
 - b. Method of continous variation
- 11. Determination of Normality of HCl using 0.1 N NaOH (using pH meter)
- 12. pH titration of unknown soda ash using pH meter
- 13. Determination potentiometricay the normzlity of the given HCl acid by titrating it with stander solution 0.1 N NaOH
- 14.Spectrophotometeric determination of eadon leaves using solvent extraction
- 15.Conductometeric titrations : Determination conductometerically the strength of HCl solution by titrating it with standerd NaOH
- 16. Determination of normality and strength of NH₄OH by titrating it with 0.1 N HCl by conductometric

- 17. Determination of normality and strength of HCl by titrating it against NH4OH by conductometric
- 18.Determination of the strength of agiven acetic acid solution by titrating it with 0.1 N NaOH (conductometric)
- 19. U.V. spectrophotometric determination of Asprin (using solvent extraction)
- 20. U.V. spectrophotometric determination of phenacetin
- 21.U.V. spectrophotometric determination of caffeine in APC tablets using solvent extraction
- 22. Determination of pk_a of bromothymol green .